Climate Multi-model Regression Using Spatial Smoothing

نویسندگان

  • Karthik Subbian
  • Arindam Banerjee
چکیده

There are several Global Climate Models (GCMs) reported by various countries to the Intergovernmental Panel on Climate Change (IPCC). Due to the varied nature of the GCM assumptions, the future projections of the GCMs show high variability which makes it difficult to come up with confident projections into the future. Climate scientists combine these multiple GCMs to minimize the variability and the prediction error. Most of these model combinations are specifically for a location, or at a global scale. They do not consider regional or local smoothing (including the IPCC model). In this paper, we address this problem of combining multiple GCM outputs with spatial smoothing as an important desired criterion. The problem formulation takes the form of multiple least squares regression for each geographic location with graph Laplacian based smoothing amongst the neighboring locations. Unlike existing Laplacian regression frameworks, our formulation has both inner and outer products of the coefficient matrix, and has Sylvester equations as its special case. We discuss a few approaches to solve the problem, including a closed-form by solving a large linear system, as well as gradient descent methods which turn out to be more efficient. We establish the superiority of our approach in terms of model accuracy and smoothing compared to several popular baselines on real GCM climate datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

به کارگیری بیز تجربی در تهیه نقشه جغرافیایی بروز بیماری سل در استان مازندران طی سال‌های 90-1384

Background and purpose: Due to the increasing information about illnesses and deaths, classified map is of appropriate methods for analyzing this type of data. Standardized infection rates are commonly used in disease mapping but had many defects. This study aimed to compare the Poisson regression models and empirical Bayes models to prepare geographical map of tuberculosis incidence in Mazanda...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Spatiotemporal analysis of rural-urban land conversion

Understanding the complexity of urban expansion requires an analysis of the factors influencing the spatial and temporal processes of rural-urban land conversion. This study aims at building a statistical land conversion model to assist in understanding land use change patterns. Specifically, GIS coupled with a logistic regression model and exponential smoothing techniques is used for exploring...

متن کامل

Estimating the Health Impact of Climate Change with Calibrated Climate Model Output.

Studies on the health impacts of climate change routinely use climate model output as future exposure projection. Uncertainty quantification, usually in the form of sensitivity analysis, has focused predominantly on the variability arise from different emission scenarios or multi-model ensembles. This paper describes a Bayesian spatial quantile regression approach to calibrate climate model out...

متن کامل

Spatial Projection of Multiple Climate Variables Using Hierarchical Multitask Learning

Future projection of climate is typically obtained by combining outputs from multiple Earth System Models (ESMs) for several climate variables such as temperature and precipitation. While IPCC has traditionally used a simple model output average, recent work has illustrated potential advantages of using a multitask learning (MTL) framework for projections of individual climate variables. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013